The Past-Tense Debate

The past and future of the past tense

Steven Pinker and Michael T. Ullman

Abstract

What is the interaction between storage and computation in language processing? What is the psychological status of grammatical rules? What are the relative strengths of connectionist and symbolic models of cognition? How are the components of language implemented in the brain? The English past tense has served as an arena for debates on these issues. We defend the theory that irregular past-tense forms arestored in the lexicon, a division of declarative memory, whereas regular forms can be computed by a concatenation rule, which requires the procedural system. Irregulars have the psychological, linguistic and neuropsychological signatures of lexical memory, whereas regulars often have the signatures of grammatical processing. Furthemore, because regular inflection is rule-driven, speakers can apply it whenever memory fails.

Steven Pinker*

Dept of Brain and
Cognitive Sciences, NE20-413, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
*e-mail:
steve@psyche.mit.edu

Michael Ullman

Dept of Neuroscience, Research Building EP-04, Georgetown University, 3900 Reservoir Rd, NW, Washington DC 20007, USA.
e-mail:michael@
georgetown.edu

F or fifteen years, the English past tense has been the subject of a debate on the nature of language processing. Thedebatebegan with thereport of a connectionist model by Rumelhart and McClelland [1] and a critique by Pinker and Prince[2], and has sincebeen the subject of many papers, conferences and simulation models [3-7] (see also McClell and and Patterson in this issue[8]).

The past tense is of theoretical interest because it embraces two strikingly different phenomena. Regular inflection, as in walk-walked and play-pl ayed, applies predictably tothousands of verbs and is productively generalized to neol ogisms such as spam-spammed and mosh-moshed, even by preschool children [9]. I rregular inflection, as in come-cameand fed-felt, applies in unpredictable ways to some 180 verbs, and is seldom generalized; rather, the regular suffix is often overgeneralized by children to theseirregular forms, as in hol ded and breaked [10,11]. A simpleexplanation is that irregular forms must be stored in memory, whereas regular forms can be generated by a rulethat suffixes-ed tothestem [12,13]. Rumelhart and McClell and challenged that explanation with a pattern-associator model (RMM) that learned to associate phonol ogical features of the stem with phonological features of the past-tense form. It thereby acquired several hundred regular and irregular forms and overgeneralized -ed to some of the irregulars.

The past tensehas served as one of the main empirical phenomena used to contrast thestrengths
and weaknesses of connectionist and rule-based models of Ianguage and cognition [8]. Moregenerally, because inflections likethepast tensearesimple, frequent, and prevalent across languages, and because the regular and irregular variants can be equated for compl exity and meaning, they have served as a test casefor issues such as the neurocognitive reality of rules and other symbol-manipulating operations and the interaction between storage and computation in cognitive processing[5-7].

In this articl ewedefend the side of this debatethat maintains that rules areindi spensablefor explaining the past tense, and by extension, language and cognitive processes [3-5,14]. Wereview what the theory does and doesn't claim, therel evant evidence, the connectionist challenges, and our hopes for the future of the debate.

The Words-and-Rules theory

TheWords and Rules (WR) theory claims that the regular-irregular distinction is an epiphenomenon of the design of thehuman languagefaculty, in particular, the distinction between lexicon and grammar made in most traditional theories of language. Thelexicon is a subdivision of memory containing (among other things) the thousands of arbitrary sound-meaning pairings that underliethe morphemes and simplewords of a language. The grammar is a system of productive, combinatorial operations that assemblemorphemes and simple words into complex words, phrases and sentences. Irregular forms arejust words, acquired and stored likeother words, but with a grammatical featurelike 'past tense' incorporated intotheir lexical entries. Regular forms, by contrast, can beproductively generated by a rule, just likephrases and sentences. A stored inflected form of a verb blocks the application of theruletothat verb (e.g. brought pre-empts bringed). Elsewhere(by default) the ruleapplies: it concatenates -ed with the symbol V ', and thus can inflect any word categorized as a verb (seeFig. 1).

I rregular forms, then, do not requirean 'exception module'. They arise because the two subsystems overlap in their expressive power: a given combination of features can be expressed by words or rules. Thus either a word (irregular) or a rule-product (regular) can satisfy the demand of a syntactic or semantic representation that a featuresuch as past tensebeovertly expressed. Diachronically, an irregular is born when (for various reasons) learners memorizea complex word outright, rather than parsing it intoa stem and an affix that codes the featureautonomously [3].

Fig. 1. Simplified illustration of the Words-and-Rules (WR) theory and the Declarative/Procedural (DP) hypothesis. When a word must be inflected, the lexicon and grammar are accessed in parallel. If an inflected form for a verb (V) exists in memory, as with irregulars (e.g. held), it will be retrieved; a signal indicating a match blocks the operation of the grammatical suffixation process via an inhibitory link from lexicon to grammar, preventing the generation of holded. If no inflected form is matched, the grammatical processor concatenates the appropriate suffix with the stem, generating a regular form.

The WR theory contrasts with classical theories of generative phonol ogy and their descendents, such as those of Chomsky and H alle [15-17], which generate irregular forms by affixing an abstract morpheme to thestem and applying rules that alter thestem's phonological composition. Such theories aredesigned to account for thefact that most irregular forms are not completely arbitrary but fall into families displaying patterns, as in ring-rang, sink-sank, sit-sat, and feed-felt, slep-slept, bleed-bled. A problem for this view is that irregular families admit numerous positive and negative counterexamples and borderline cases, so any set of rules will be complex and laden with exceptions, unless it posits implausibly abstract underlying representations (e.g. rin for run, which allows the verb to undergo the samerules as sing-sang-sung).

Thetheory also contrasts with the Rumelhart-McClelland model (RMM) and other connectionist models that posit a single pattern associator, with neither lexical entries nor a
combinatorial apparatus [1,18,19]. The key to these pattern associators is that rather than linking a word to a word stored in memory, they link sounds tosounds. Becausesimilar words share sounds, their representations are partly superimposed, and any association formed to one is automatically general ized to the others. This allows such models toacquirefamilies of similar forms moreeasily than arbitrary sets, and to generalize the patterns to new similar words. Having been trained on fling-flung and cling-clung, they may generalize tospling-splung (as children and adults occasionally do [20,21]); and having been trained on flip-flipped and clip-clipped, they generalize to plip plipped.

WR is descended from a third approach: the lexicalist theories of J ackendoff, Lieber, and others, whorecognized that many morphol ogical phenomena are neither arbitrary lists nor fully systematic and productive[22-25]. They posited 'lexical redundancy rules', which do not freely generate new forms but merely capture patterns of redundancy in thelexicon, and allow sporadic generalization by analogy. Pinker and Prince proposed that lexical redundancy rules are not rules at all, but consequences of the superpositional nature of memory: similar items are easier to learn than arbitrary sets, and new items resembling old ones tend to inherit their properties. They argued that RM M's successes came from implementing this feature of memory, and proposed theWR theory as a lexical ist compromise between thegenerative and connectionist extremes. Irregulars arestored in a lexicon with thesuperpositional property of pattern associators; regulars can be generated or parsed by rules.

Ullman and colleagues have recently extended the WR theory to a hypothesis about theneurocognitive substrate of lexicon and grammar. According to the Dedarative/Procedural (DP) hypothesis [5,26], lexical memory is a subdi vision of dedarative memory, which stores facts, events and arbitrary relations [27,28]. The consol idation of new dedarative memories requires medial-temporal lobe structures, in particular thehippocampus. Long-term retention depends largely on neocortex, especially temporal and temporo-parietal regions; other structures are important for actively retrieving and searching for thesememories. Grammatical processing, by contrast, depends on the procedural system, which underlies the learning and control of motor and cognitiveskills, particularly those involving sequences [27,28]. It is subserved by the basal ganglia, and by the frontal cortex to which they project - in the case of Ianguage, particularly Broca's area and neighboring anterior cortical regions. Irregular forms must be stored in the lexical portion of dedarative memory; regular past-tense forms can be computed in the grammatical portion of the procedural system.

What the words-and-rules theory does not say

TheWR theory does not literally posit thediscreterule 'toform thepast tense, add -ed totheverb'. All it posits is thepast-tensemorpheme-ed, a variable V'(included both in theattachment conditions for -ed and the lexical entry of every verb), and a general operation of merging or unifying constituents. The'regular rule' or 'past-tenserule'is shorthand for theunification operation applied tothe past-tensemorpheme. WR is thus compatibl ewith constraint- and constructionbased theories of language, as long as they allow for variables and combinatorial operations [29].

WR does not posit that regular forms arenever stored, only that they do not haveto be[3,30-32]. It would bedifficult to prohibit regular forms from ever being stored, given that human memory can acquiremany kinds of verbal material (e.g. idioms, clichés, poems). WR posits a parallel-race model, like thosedefended for inflection by Baayen and Caramazza and by many psychol inguists for visual word recognition [33-39]. Whether a regular form is stored, and whether stored regular forms areaccessed, depends on word-, task-, and speaker-specific factors [5,40-43]. F or example, regular forms that constitutedoublets with irregulars, such as dived/ doveand dreamed/ dreamt, must be stored to escape blocking by theirregular. As predicted, judgments of thenaturalness of regular doublet forms show strong effects of frequency but other regular forms do not [30]. The same is truefor regular forms of verbs that resemble irregulars (such as blinked and glided), becausetheforms must overcomea partial blocking effect exerted by the similar irregulars [30,32]. Tasks that require people to be sensitive to the physical form of words (such as progressivedemasking) or tothe prior existence of words (such as lexical decision), as opposed totasks that ask peopletojudge possibleforms, arelikely to tap stored representations for medium- and high-frequency regular forms [3,35,44].

Finally, WR is not a chimera of a connectionist pattern associator glued ontoa rulesystem. The lexicon has superpositional properties similar to a pattern associator, but lexical entries havestructured semantic, morphological, phonological and syntactic representations of a kind not currently implemented in pattern associators.

Empirical tests

Thekey predictions of WR are: (1) that irregulars should have the psychol ogical, linguistic and neuropsychological signatures of lexical memory, whereas regulars will often have the signatures of grammatical processing; and (2) that speakers should apply regular inflection whenever memory fails to supply a form for that category. A stored form may be unavailablefor many reasons: low or zero frequency, lack of a similar form that could inspire an analogy, inaccessibility because of a word's exocentric structure(seebelow), novelty of the form in childhood,
and various kinds of damagetotheneurological substrate of lexical memory. Theheterogeneity of theseregular-eliciting circumstances offers converging evidencefor distinguishablesubsystems, including a productive default that does not critically depend on the statistics of patterns in memory. Here we discuss threetypes of evidence for a distinction between lookup and concatenation, and connectionists'attempts to providealternative accounts (for reviews, see[3,4,14,31]).

Generalization to unusual novel words TheRM M model produced odd blends (mail-membled, trilb-treelilt), or no output, for novel words unlikethose in its training set [2,20]. People, by contrast, readily apply regular inflections to novel unusual words [20]. According toWR, this is because-ed can attach to any word dassified as a verb, even if dissimilar toexisting stored regulars.

Oneconnectionist explanation of thedifficulties of themodel is that they are specificto RMM, which is an early model ing exerciselacking a proper phonological representation, a hidden layer, and a proper output decoder. However, a pattern associator remedying all threedeficiencies also had troubl egeneralizing to unusual words [45]. M orerecent model s that are daimed to solvethe problem do so, tellingly, by implementing or presupposing a rule. For example, Hare, Elman and Daugherty installed a 'dean-up network'in which the units for -ed strengthen the units for an unchanged stem vowel and inhibit the units for a changed vowel [46] - in effect, an innate mechanism dedicated to the English past tense. Many recent models havegiven up on generating past-tense forms; their output layer contains one unit for every past-tensechange, turning inflection intoa multiplechoicetest among a few innate possibilities [47-49]. To convert thechoiceintoan actual form, someother mechanism would have to copy thestem and apply the pattern corresponding tothe selected unit. Such a mechanism is simply a rule. Marcus has argued that pattern associators'difficulty in generalizing to dissimilar forms is rooted in their design [4].

Another response is to daim that people's success at generalization depends on certain statistical patterns that alsofoster generalization in pattern associators. Many connectionists claimed that robust generalization depends on regular forms constituting themajority of forms in the child's input [50]. However, theonset and rate of over-regularization errors in children do not correlate with changes in thenumber or proportion of regular verbs used by parents [11,51,52]. Moreover, thereareregular inflections in other languages, such as theGerman -s plural, that apply to a minority of nouns ($\sim 7 \%$), but aregeneralized like English regular inflection, namely, to unusual nouns, exocentric nouns, and in childhood [50].

Several modelers now arguethat it is not the number or proportion of regular words that is crucial but their distribution in phonological

Box 1. Systematic regularization

An intriguing aspect of inflection is that irregular forms can sometimes turn up in regular form. Some of these regularizations are unsystematic - for example, doublets such as dived/dove and dreamt/dreamed, in which the regular form is used sporadically because the irregular form is low in frequency and hence poorly remembered. But many are systematic: in particular contexts, the regular form is consistently used, such as ringed the city and low-lifes.

The Words-and-Rules theory explains this phenomenon using an independently motivated theory of compositionality in word-formation [a,b] (see also Fig. 2 in main article). Irregular-sounding words are regularized if they lack a root in head position that can be marked for the inflectional feature (tense or number). The regular suffix applies as the default, as it does in other cases where memory access is disabled. This neatly explains a diverse set of systematic regularizations found in actual usages, laboratory experiments with adults and children, and many languages [$\mathrm{c}-\mathrm{f}]$:

The word lacks a noun or a verb root

- onomatopoeia: dinged, pinged, zinged, peeped, beeped
- quotations: 'I found three man's on page 1 ';' 'We to be'd and not to be'd in this room'
- names: the J ulia Childs, the Thomas Manns, the Shelby Footes
- truncations: synched, sysmans
- unassimilated borrowings: talismans, mongooses

The root cannot be marked for the feature

- verbs with noun or adjective roots: ringed the city, steeled myself, spitted the pig, bared his soul, righted the boat, stringed the peas
- nouns with verb roots: a few loafs (episodes of loafing), a couple of wolfs (wolfing down food)

The word's structure is exocentric

- verbs based on nouns based on verbs: grandstanded, flied out, costed out the grant, encasted his leg
- nouns based on names based on nouns: Mickey Mouses (simpletons), Renault Elfs, Top Shelfs (frozen food), Seawolfs (aircraft), Toronto MapleLeafs
- nouns whose referents are distinct from those of their roots: low-lifes, still lifes, sabre-tooths, Walkmans, tenderfoots
- nouns based on phrases: Bag-A-Leafs, Shear-A-Sheeps

Although the meaning of the regularized forms differs from that of their irregular counterparts, regularization is rarely triggered by differences in
semantic features alone, as connectionists sometimes suggest [g,h]. If an irregular-sounding word changes in meaning, but retains a root in head position, it stays irregular, no matter how radical the change or opaque the metaphor:

- compositional prefixing: overate, overshot, undid, preshrank, remade, outsold
- non-compositional prefixing: overcame, understood, withdrew, beheld, withstood, undertook
- compounding: bogeymen, superwomen, muskoxen, stepchildren, milkteeth
- metaphors: straw men, chessmen, snowmen, sawteeth, metrical feet, six feet tall, brainchildren, children of a lesser god, beewolves, wolves in sheep's clothing
- idioms: went out with (dated), went nuts (demented), went in for(chose), went off(exploded), went off(spoiled);
took in (swindled), took off(launched), took in (welcomed), took over (usurped), took up, (commenced), took a leak (urinated), took a bath (lost money), took a bath (bathed), took a walk(walked); blew over(ended), blew away (assassinated), blew away (impressed), blew up (exploded), blew up (inflated), blew off(dismissed), blew in (arrived)
[scores of other examples with come, do, have, get, set, put, stand, throw, etc.]

References

a Williams, E. (1981) On the notions of 'lexically related' and 'head of a word'. Linguist. Inq. 12, 245-274
b Selkirk, E.O. (1982) TheSyntax of Words, MIT Press
c Pinker, S. (1999) Words and Rules: TheI ngredients of Language, HarperCollins
d Kim, J. J . et al. (1994) Sensitivity of children's inflection to morphol ogical structure. J . Child Lang. 21, 173-209
e Marcus, G.F. etal. (1995) German inflection: the exception that proves the rule. Cogn. Psychol. 29, 189-256
f Berent, I. et al. (1999) Default nominal inflection in Hebrew: evidencefor mental variables. Cognition 72, 1-44
g Daugherty, K.G. etal. (1993) Why no mere mortal has ever flown out to center field but people often say they do. In 15th Annu. Conf. Cogn. Sci. Soc., Erlbaum
h Harris, C.L. (1992) Understanding English past-tenseformation: the shared meaning hypothesis. In Proc. 14th Annu. Conf. Cogn. Sci. Soc., Erlbaum
space[46,48,53,54]. If irregulars fall intodusters of similar forms (sing, ring, spring; grow, throw, blow; etc.), but regulars aresprinkled through no-man's-land, (rhumba'd, oinked, etc.), one can design pattern associators that devote some of their units and connections totheno-man's-land, and they will generalizetonew unusual words. Puttingaside the problem that most of these model s have their inflections innately wired in, the models cannot deal with languages such as Hebrew, whereregular and irregular nouns areintermingled in the same phonological neighborhoods. Nonetheless, Hebrew regular plural suffixes behavelike-s in English and German: speakers apply themto unusual-sounding and exocentric nouns [55,56].

Systematic regularization

Some irregulars show up in regular form in certain contexts, such as ringed thecity (not rang), grandstanded and low-lifes [2,57] (seeB ox 1 for further examples). This shows that sound al one cannot be the input totheinflection system: a given
input, likering, can beinflected either as rang or ringed, depending on some other factor.

The phenomenon falls out of the grammatical mechanism governing how complex words are formed [24,50,58,59]. Generally a complex English word inherits its features from its rightmost morpheme, its 'head'. F or example, the head of overeat is eat; therefore, overeat is a verb (it inherits the V ' category of eat), it refers to a kind of eating (becauseit inherits the semantic features of eat), and it has theirregular past-tense overate(because it inherits thestored past-tenseform of eat) (seeFig. 2).

But there is a small family of exceptions: headless (exocentric) words, which for various reasons cannot get their features from their rightmost morpheme. For example, unlikeendocentric verbs such as overeat-overateand outdo-outdid, which areverbs based on verbs, to ring and tograndstand areverbs based on nouns (a ring, a grandstand). In forming or parsing the word, thehead-inheritance mechanism must becircumvented. With that data pathway plugged, thereis noway for theirregular forms rang

Fig. 2. Systematic regularization. Complex words are assembled out of simple morphemes according to a 'righthand-head' rule: the rightmost morpheme, the head, contributes its syntactic, semantic and morphological properties to the word as a whole. Thus in (a), the combination of over- and eatis a verb, because its head (circled), eat, is a verb (V); its meaning is a kind of eating (eating too much), because that is the meaning of eat, and its past-tense form is overate, because the irregular past-tense of eatis ate. All three kinds of information percolate up from the lexical entry for the head in memory along the rightmost edge of the word's tree structure (thick arrows). Similarly in (b), the combination of work and man is a noun (N), it refers to a kind of man, and its plural is workmen, the result of its inheriting all three properties from its head, man. However, a handful of derived words in English (headless or exocentric words) have to disable this inheritance mechanism. A low-life (c) is not a kind of life (in the way a workman is a kind of man) but a person who has a low life; for the word to work this way the usual data pipeline has to be blocked (depicted by the no entry sign). This leaves the irregular plural form (lives), trapped in memory, and the regular suffix -s applies as the default. The baseball term to fly out (d) comes from the noun a fly (as in an infield fly), which itself came from the simple verb root to fly (at the bottom of the tree). The word's structure requires the inheritance mechanism to be blocked twice: to allow the verb root fly to be converted to the noun (because verbs ordinarily beget verbs, not nouns) and again to allow the noun to be converted back into a verb (because nouns ordinarily beget nouns). The irregular past-tense forms flew and flown are sealed in memory, and -ed is suffixed as the default, generating flied out.
or stood to percol ate up from theentries for ring or stand. With theirregular form sealed in memory, the suffixation rulesteps in as the default, yielding ringed and grandstanded. Many examples, invol ving diverse constructions from several languagefamilies, have been documented from naturalistic sources and experimentally elicited from children and adults [3,50,60,61]. Apparent counterexamples exist, but virtually all can independently beshown to be cases wherepeople do not assign an exocentric structuretotheword [3,60].

Therehavebeen threeconnectionist explanations. One is that if a pattern associator had semantic as well as phonological input units, a complex word with an altered meaning would dilutethe associations to irregular forms, favoring the competing regular [62,63]. However, in almost every case in which an irregular
word's meaning changes, the irregular form is in fact retained, such as metaphors (straw men/ *mans, sawteeth, God's children) and idioms (cut/ *cutted a deal, took a leak, hit thefan, put them down) $[2,3,50]$. Accordingly, experiments have shown that just changing themeaning of an irregular verb does not causepeopletoswitch totheregular [60,61]. Although all complex and derived words aresemantically different from their bases, when semantic similarity and exocentricstructure areunconfounded in a regression, exocentricstructureaccounts for a significant proportion of the variance in choice of inflectional form, and semanticsimilarity does not [60].

Equally unpromising is the suggestion that people regularizewords toavoid ambiguity [63-65]. Many idioms areambiguous between literal and idiomatic senses, such as bought thefarm and threw it up, or among different idiomatic senses as well, such as blew away (impressed, assassinated), but this does not lead people to switch to a regular to disambiguate one of them (buyed thefarm, throwed up). Conversely, grandstood and low-lives are unambiguous, but peoplestill find them ungrammatical.

Oneconnectionist model added nodes representing the semantic similarity of the verb tothe homophonous noun (e.g. toring and a ring) [64]. Thenetwork can then betrained tohave thesenodes turn off irregular patterns and turn on the regular one. But these unusual nodes arenot part of the semantic representation of a verb itself; they arean explicit encoding of the verb's relation tothenoun that heads it-that is, a crude implementation of morphological structure. In addition, the modelers had totrain the network on regular past tenses of denominal verbs homophonous with irregulars. But such homophones are virtually absent from speech addressed to children, who nonethel ess tend toregularizeexocentricforms [61].

Neuropsychological dissociations

AccordingtoWR and DP, damagetotheneural substratefor lexical memory should cause a greater impairment of irregular forms (and any regular forms that aredependent on memory storage), and a diminution of thetendency to anal ogizenovel irregular-sounding forms according tostored patterns (as in spling-splung). In comparison, damage tothe substratefor grammatical combination should cause a greater impairment of theuse of the rule in regular forms, and of its generalization to novel forms.

Anomia is an impairment in word finding often associated with damagetoleft temporal/temporoparietal regions (see Fig. 3a). Patients often produce fluent and largely grammatical speech, suggesting that thelexicon is more impaired than grammatical combination [66]. In elicited past-tense production tasks, patients (compared with controls) do worse with irregular than with regular verbs (Fig. 3b), produce regularization errors likeswimmed (which occur when nomemorized form comes to mind and the rule applies

Fig. 3. Dissociating regular and irregular processing in aphasia. (a) The approximate lesion sites of patient FCL (red area, left anterior perisylvian regions), who had symptoms of agrammatism, and patient J LU (green area, left temporo-parietal region), who had symptoms of anomia. (b) Results of verbinflection tests showed that the agrammatic patient had more trouble inflecting regular verbs (lighter bars) than irregular verbs (darker bars), whereas the anomic patient had more trouble inflecting irregular verbs - and overapplied the regular suffix to many of the irregulars (light green bar on top of darkgreen bar). The performance of age- and education-matched control subjects is shown in the grey bars.
as the default), rarely anal ogize irregular patterns to novel words (e.g. spling-splung), and arerelatively unimpaired at generating novel regular forms like plammed [26,67,68]. Agrammatism, by contrast, is an impairment in producing fluent grammatical sequences, and is associated with damageto anterior perisylvian regions of theleft hemisphere [69,70]. As predicted, agrammatic patients show theopposite pattern: moretroubleinflecting regular than irregular verbs, a lack of errors likeswimmed, and great difficulty suffixing novel words [26,67]. Similar effects havebeen documented in reading aloud, writing to dictation, repeating and judging words (even when controlling for frequency and length) [67],and in a regular/irregular contrast with J apanese-speaking patients [71].

The predicted double dissociation patterns are also seen in a comparison of neurodegenerative diseases. Alzheimer's disease(AD) is marked by greater
degeneration of medial and neocortical temporal lobe structures than of frontal cortex (particularly Broca's area) and thebasal ganglia, and greater impairment of lexical and conceptual knowledgethan of motor and cognitive skills, including aspects of grammatical processing [72]. Parkinson's disease (PD), associated with basal ganglia degeneration, is marked by greater impairment of motor and cognitiveskills (including grammatical processing) than use of words and facts [72,73]. As predicted, AD patients have moretroubleinflecting irregular than regular verbs, are relatively unimpaired at suffixing novel words, generatefew irregular anal ogies for novel words, and produce over-regularization errors; PD patients show the contrasting patterns [26,32]. M oreover, the performance patterns correlate with the severity of the associated processing impairments in the two populations: anomia in AD, and right-side hypokinesia (an index of left-hemi spherebasal ganglia degeneration) in PD [26,32].

Intriguingly, H untington's Disease (HD), caused by degeneration of different basal ganglia structures, results in disinhibition of theprojected frontal areas, leading tounsupressiblemovements [73]. When HD patients inflect verbs, they show a third pattern: producing extra suffixes for regular and novel words likewalkeded, plaggeded and dugged, but not anal ogous errors on irregulars likedugug or keptetsuggesting that theseerrors areinstances of unsuppressed regular suffixation $[26,32]$.

Converging findings comefrom other methodol ogies. In normal subjects, both regular and irregular inflected forms can prime their stems. By hypothesis, a regular form is parsed into affix and stem (which primes itself); an irregular form is associated with its stem, somewhat likesemantic priming. Patients with left inferior frontal damage do not show regular priming (walked-walk), although they retain irregular priming (found-find) and semantic priming (swan-goose). A patient with temporal-lobe damage showed theopposite pattern [68,74,75]. In studies that haverecorded eventrelated potentials (ERPs) to printed words, when a regular suffix is placed on an irregular word (e.g. the German Muskels) or omitted whereit is obligatory (e.g. Yesterday I walk'), the electrophysiological response is similar to the Left Anterior Negativity (LAN) commonly seen with syntactic violations. When irregular inflection is illicitly applied (e.g. the German Karusellen) or omitted (e.g. Yesterday I dig'), the response is a central negativity similar to the N400 elicited by lexical anomalies, including pronounceablenon-words [40,76-79]. This suggests that thebrain processes regular forms likesyntactic combinations and irregular forms likewords.

Doubledissociations aredifficult to explain in pattern associators, because except for artificially small networks, 'lesioning'thenetworks hurts irregular forms morethan regular ones [80]. A recent interesting model by J oanisse and Seidenberg

Acknowledgements

We dedicate this paper to David Rumelhart and J ay McClelland, in acknowledgement of the stimulating effect of their model on psycholinguistic and neurolinguistic research. S.P. was supported by NIH grantHD-18381.M.T.U. was supported by a McDonnell-Pew grantin Cognitive Neuroscience, NSF SBR-9905273, NIH MH58189, and Army DAMD-17-93-V3018/3019/3020 and DAMD-17-99-2-9007.
conceded that distinct subsystems haveto belesioned to produce doubledissociations [81]. Although they called thesemodules 'phonological' and 'semantic,' the semantic module was in fact a lexicon: it had one unit dedi cated toeach word, with norepresentation of meaning. Thefinding that lesioning a lexicon differentially impairs irregular inflection is exactly what WR predicts. Moreover, themodel failed to duplicate thefinding that agrammatic patients have moretrouble with regular than irregular verbs [26,67]. Lesioning the phonology module caused a consistent sel ective deficit only with novel verbs; regulars were noharder than irregulars. Thereport also claims that because a novel form has no meaning, theonly way to generateits past tense is by analogy to known phonological forms'[81]. This predicts that patient groups should have parallel tendencies to generalize regular and irregular inflection to novel words (plammed and splung, respectively), whereas in fact thesetendencies dissociate[32,67]. Finally, themodel predicts that sel ectivedifficulty with irregular forms should depend on semantic deficits. Miozzo reports an anomic patient who had difficulty accessing word forms but not word meanings; nonetheless, hehad trouble with irregulars but not with regulars [82].

The future of the past-tense debate

TheRumelhart-McClelland model was deservedly influential, webelieve, becauseit captured a real phenomenon. Thepersistence of families of irregular verbs with overlapping partial similarities, and people's use and occasional general ization of these family patterns according to similarity and frequency, can besimply explained by the assumption that human memory is partly superpositional and associative. Theories that try to explain every instance of redundancy among words using the same combinatorial mechanismused for productive syntax and regular morphol ogy require needless complexity and esoteric representations, and fail to capturethe many linguistic, psychological and neuropsychological phenomena in which irregular forms behavelikewords.

At the sametime, the post-RMM connectionist models have revealed the problems in trying to explain all linguistic phenomena with a single pattern-associator architecture. Each model has been tail ored to account for one phenomenon explained by theWR theory; unlikeRM M, few model s account for morethan onephenomenon or predict new ones. And modelers repeatedly build in or presuppose surrogates for thelinguistic phenomena they claim to eschew, such as lexical items, morphological structure and concatenation operations. We predict that the need for structured representations and combinatorial operations would assert itself even morestrongly if modelers included phenomena that arecurrently ignored in current simulations, such as syntax and its interaction with inflection, the massively productive combinatorial inflection of polysynthetic languages, and the psychol ogical events concealed by providing themodels with correct past-tense forms during training(i.e. children's ability to recognizean input as a past-tenseform, retrieveits stem from memory, computetheir own form, and compare thetwo).

As an increasing number of linguistic and neuropsychological phenomena are addressed, especially the complex data from neuroimaging, inadequacies will no doubt berevealed in both kinds of models. N othing in linguistics prevents theories from appeal ing toricher conceptions of memory than simple rotestorage. Neither does neural network modeling prohibit structured or abstract representations, combinatorial operations, and subsystems for different kinds of computation. Theadversarial nature of scientific debatemight sometimes have prevented both sides from acknowl edging that features of onemodel may correspond to constructs of theother, described at a different level of analysis. Wesuspect that allowing a full range of data totell us which processes aremost naturally explained by which kinds of mechanisms, rather than shoehorning all phenomena intoa single mechanism favored by one or another camp, holds the best hopefor an eventual resolution of thepast-tensedebate.

References

1 Rumelhart, D.E. and McClelland, J .L. (1986) On learning the past tenses of English verbs. In Paralle Distributed Processing: Explorations in theMicrostructures of Cognition (Vol. 2) (McClelland, J .L.etal., eds), pp. 216-271, MIT Press
2 Pinker, S. and Prince, A. (1988) On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition 28, 73-193
3 Pinker, S. (1999) Words and Rules: The Ingredients of Language, HarperCollins
4 Marcus, G.F. (2001) TheAlgebraic Mind: Integrating Connectionism and CognitiveScience, MIT Press
5 Ullman, M.T. (2001)A neurocognitive perspective on language: the declarative/procedural model. Nat. Rev. Neurosci. 2, 717-726

6 Lima, S.D. et al. (eds) (1994) TheReality of LinguisticRules, J ohn Benjamins
7 Nooteboom, S. et al. (eds) (2002) Storageand Computation in the LanguageF aculty, Kluwer
8 McClelland, J .L. and Patterson, K. (2002) Rules or connections in past-tense inflections: what does the evidencerule out? Trends Cog. Sci. 6, 465-472
9 Berko, J . (1958) The child's learning of English morphology. Word 14, 150-177
10 Chamberlain, A.F. (1906) Preteriteforms, etc., in thelanguage of English-speaking children. Mod. Lang. Notes 21, 42-44
11 Marcus, G.F.et al. (1992) Overregularization in languageacquisition. Monogr. Soc. Res. Child Dev. 57, 1-165
12 Chomsky, N. (1959)A review of B.F. Skinner's Verbal Behavior. Language35, 26-58
13 Pinker, S. (1984) LanguageLearnability and LanguageDevel opment, Harvard University Press

14 Clahsen, H. (1999) Lexical entries and rules of language: a multidisciplinary study of German inflection. Behav. Brain Sci. 22, 991-1060
15 Chomsky, N. and Halle, M. (1968/1991) The Sound Pattern of English, MIT Press
16 Halle, M. and Mohanan, K.P. (1985) Segmental phonology of modern English. LinguisticInquiry 16, 57-116
17 Halle, M. and Marantz, A. (1993) Distributed morphol ogy and the pieces of inflection. In The View from Building 20 (Hale, K. and Keyser, S.J ., eds), MIT Press
18 Plunkett, K. and Marchman, V. (1993) F rom rote learning to system building: acquiring verb morphology in children and connectionist nets. Cognition 48, 21-69
19 Elman, J . et al. (1996) Rethinking Innateness: A Connectionist Perspectiveon Devel opment, MIT Press

20 Prasada, S. and Pinker, S. (1993) Generalization of regular and irregular morphological patterns. Lang. Cogn. Proc. 8, 1-56
21 Xu, F. and Pinker, S. (1995) Weird past tense forms.J. Child Lang. 22, 531-556
22 J ackendoff, R.S. (1975) Morphol ogical and semantic regularities in thelexicon. Language 51, 639-671
23 Aronoff, M. (1976) Word Formation in Generative Grammar, MIT Press
24 Lieber, R. (1980) On the organization of the lexicon. In Linguistics and Philosophy, MIT
25 Bresnan, J. (1978) A realistictransformational grammar. In Linguistic Theory and Psychol ogical Reality (Halle, J .B. and Miller, G., eds), MIT Press
26 Ullman, M.T. et al. (1997)A neural dissociation within language: evidence that themental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J. Cogn. Neurosci. 9, 266-276
27 Mishkin, M. \&tal. (1984) Memories and habits: Two neural systems. In Neurobiol ogy of Learning and Memory (Lynch, G. et al., eds), pp. 65-77, Guilford Press
28 Squire, L.R. and K nowlton, B.J . (2000) The medial temporal lobe, thehippocampus, and the memory systems of thebrain. In TheNew CognitiveNeurosciences (Gazzaniga, M.S., ed.), pp. 765-780, MIT Press
29 J ackendoff, R. (2002) Foundations of Language: Brain, Meaning, Grammar, Evolution, Oxford University Press
30 Ullman, M.T. (1993) The computation of inflectional morphology. In Department of Brain and CognitiveSciences, pp. 263, Massachusetts Institute of Technology
31 Ullman, M.T. (2001) Thedeclarative/procedural model of lexicon and grammar.J . Psycholinguist. Res. 30, 37-69
32 Ullman, M.T. Evidencethat lexical memory is part of thetemporal lobedeclarative memory, and that grammatical rules are processed by the frontal/basal-ganglia procedural system. Brain Lang. (in press)
33 Badecker, W. and Caramazza, A. (1991) Morphol ogical composition in the lexical output system. Cogn. Neuropsychol. 8, 335-367
34 Burani, C. et al. (1984) Morphological structure and lexical access. Vis. Lang. 18, 348-358
35 Baayen, R.H.etal. (1997) Singulars and plurals in Dutch: evidencefor a parallel dual-routemodel. J. Mem. Lang. 37, 94-117

36 Balota, D.A. and Ferraro, R. (1993)A dissociation of frequency and regularity effects in pronunciation performance across young adults, older adults, and individuals with seniledementia of theAlzheimer types. J. Mem. Lang. 32, 573-592
37 Balota, D.A. and Spieler, D.H. (1997) Theutility of item-level analyses in model evalutation: a reply to Seidenberg and Plaut. Psychol. Sci. 9, 238-240
38 Besner, D. et al. (1990) On the connection between connectionism and data: area few words necessary? Psychol. Rev. 97, 432-446
39 Coltheart, M. et al. (1993) M odels of reading aloud: dual-routeand parallel-distributedprocessing approaches. Psychol. Rev. 100, 589-608

40 Ullman, M.T. etal. Sex differences in the neurocognition of language. Brain Lang. (in press)
41 Ullman, M.T. and Gopnik, M. (1999) Inflectional morphology in a family with inherited specific languageimpairment. Appl. Psychol inguist. 20, 51-117
42 van der Lely, H.K.J . and UlIman, M.T. (2001) Past tensemorphology in specifically language impaired and normally developing children. Lang. Cogn. Proc. 16, 177-217
43 Ullman, M.T. (2001) Theneural basis of lexicon and grammar in first and second language: thededarative/procedural model. Bilingual. Lang. Cogn. 4, 105-122
44 Alegre, M. and Gordon, P. (1999) Frequency effects and the representational status of regular inflections. J. Mem. Lang. 40, 41-61
45 Sproat, R. (1992) M orphology and Computation, MIT Press
46 Hare, M. et al. (1995) Default generalization in connectionist networks. Lang. Cogn. Proc. 10, 601-630
47 Hare, M. and Elman, J . (1992)A connectionist account of English inflectional morphology: evidence from language change. In 14th Annu. Conf. Cogn. Sci. Soc., pp. 265-270, Erlbaum
48 Nakisa, R.C. and Hahn, U. (1996) Where defaults don't help: the case of the German plural system. In Proc. 18th Annu. Conf. Cogn. Sci. Soc. (Cottrell, G.W., ed.), pp. 177-182, Erlbaum
49 Hahn, U. and Nakisa, R.C. (2000) German inflection: singlerouteor dual route? Cogn. Psychol. 41, 313-360
50 Marcus, G.F. et al. (1995) German inflection: the exception that proves therule. Cogn. Psychol. 29, 189-256
51 Marcus, G.F. (1995) Theacquisition of inflection in children and multilayered connectionist networks. Cognition 56, 271-279
52 Marcus, G.F. (1995) Children's overregularization of English plurals: a quantitative analysis.
J. Child Lang. 22, 447-459

53 Forrester, N. and Plunkett, K. (1994)
Learning theArabic plural: the casefor minority default mappings in connectionist networks. In 16th Annu. Conf. Cogn. Sci. Soc., Erlbaum
54 Plunkett, K. and Nakisa, R. (1997)A connectionist model of theArab plural system. Lang. Cogn. Proc. 12, 807-836
55 Berent, I. et al. Thenature of regularity and irregularity: evidencefrom Hebrew nominal inflection.J. Psycholinguist. Res. (in press)
56 Berent, I .et al. (1999) Default nominal inflection in Hebrew: evidencefor mental variables. Cognition 72, 1-44
57 Kiparsky, P. (1982) Lexical phonology and morphology. In Linguistics in theMorning Calm (Yang, I.S., ed.), pp. 3-91, Hansin, Seoul.
58 Williams, E. (1981) On thenotions of 'lexically related' and 'head of a word'. Linguist. Inq. 12, 245-274
59 Selkirk, E.O. (1982) TheSyntax of Words, MIT Press
60 Kim, J J. .etal. (1991) Why nomeremortal has ever flown out to center field. Cogn. Sci. 15, 173-218
61 Kim, J.J.etal. (1994) Sensitivity of children's inflection to morphological structure.
J. Child Lang. 21, 173-209

62 MacWhinney, B. and Leinbach, J . (1991) Implementations are not conceptualizations: revising the verb learning model. Cognition 40, 121-157
63 Harris, C.L. (1992) Understanding English past-tenseformation: the shared meaning hypothesis. In Proc. 14th Annu. Conf. Cogn. Sci. Soc., Erlbaum
64 Daugherty, K.G. et al. (1993) Why no mere mortal has ever flown out to center field but people often say they do. In 15th Annu. Conf. Cogn. Sci. Soc., Erlbaum
65 Shirai, Y. (1997) Is regularization determined by semantics, or grammar, or both? Comments on Kim, Marcus, Pinker, Hollander \& Coppola. J . Child Lang. 24, 495-501
66 Goodglass, H. (1993) Understanding Aphasia, AcademicPress
67 Ullman, M.T. et al. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang. (in press)
68 Tyler, L.K. et al. (2002) Dissociations in processing past tense morphology: neuropathology and behavioral studies. J. Cogn. Neurosci. 14, 79-94

69 Alexander, M.P. (1997) Aphasia: clinical and anatomic aspects. In Behavioral Neurol ogy and Neuropsychology (Feinberg, T.E. and Farah, M.J ., eds), pp. 133-150, McGraw-Hill
70 Damasio, A.R. (1992) Aphasia. N. Engl.J . Med. 326, 531-539
71 Hagiwara, H. et al. (1999) Neurolinguistic evidencefor rule-based nominal suffixation. Language 75, 739-763
72 Feinberg, T.E. and F arah, M.J. (eds) (1997) Behavioral Neurology and Neuropsychology, McGraw-Hill
73 J ankovic, J . and Tolosa, E.E. (1993) Parkinson's Diseaseand Movement Disorders, Williams \& Wilkins
74 Marslen-Wilson, W.D. and Tyler, L.K. (1997) Dissociating types of mental computation. Nature 387, 592-594
75 Marslen-Wilson, W.D. and Tyler, L.K. (1998) Rules, representations, and the English past tense. Trends Cogn. Sci. 2, 428-435
76 Weyerts, H. et al. (1997) Brain potentials indicate differences between regular and irregular German plurals. Neuroreport 8, 957-962
77 Penke, M. et al. (1997) How the brain processes complex words: an event-related potential study of German verb inflections. Cogn. Brain Res. 6, 37-52
78 Gross, M. et al. (1998) Human brain potentials to violations in morphologically complex Italian words. Neurosci. Lett. 241, 83-86
79 Rodriguez-Fornells, A. et al. (2001) Event-related brain responses tomorphological violations in Catalan. Cogn. Brain Res. 11, 47-58
80 Bullinaria, J.A. and Chater, N. (1995) Connectionist modeling: implications for cognitiveneuropsychology. Lang. Cogn. Proc. 10, 227-264
81 J oanisse, M.F. and Seidenberg, M.S. (1999) Impairments in verb morphol ogy after brain injury: a connectionist model. Proc. NatI. Acad. Sci.U.S.A. 96, 7592-7597
82 Miozzo, M. On the processing of regular and irregular forms of verbs and nouns: evidencefrom neuropsychology. Cognition (in press)

'Words orRules' cannot exploit the regularity in exceptions

Reply to Pinker and UlIman

J ames L. McClelland
Center for the Neural Basis of Cognition and Dept of Psychology, Carnegie Mellon University, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
e-mail:
jlm@cnbc.cmu.edu

Karalyn Patterson

Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, UK CB2 2EF. e-mail:
karalyn.patterson@ mrc-cbu.cam.ac.uk

Pinker and UlIman [1] succinctly restate their position that the English past tense is governed by two competing mechanisms, identified as 'words and rules', and taken as examples of distinct procedural and ded arativesystems. Their mechanisms work separately, sothat only oneor theother is responsible for yielding a particular past tenseform. To produce the past tense of kep, words and rules raceto generate a response; as the correct past tense of keep is not regular, it must begenerated by thelexical mechanism. F or this reason, wethink of their approach as the 'words or rules' theory.

Our approach is different. An integrated connectionist network maps from the stems of all verbs totheir past-tense forms, using a single network of units and connections. For example, in the original Rumelhart and McClelland model [2], the sameunits and connections that produceregular past tenses from regular stems al so process the irregulars, so the network has an inherent tendency to do the samething to the exceptions that it does toregulars namely, copy thefeatures of the stemtothepast-tense form and add/d/, /t/ or / \uparrow d/depending on thefinal consonant. To produce kept instead of keped (note that both end with unvoiced /t/) all that is required is to adjust theactivations of theoutput units representing the vowel, something that the network will havelearned to do on thebasis of experience with keep and its neighbors crep, Ieap, sleep, sweep and weep. Thenetwork uses the sameconnection-based knowledge that allows it to perform the regular mapping, and al sotaps into specific connections activated by the particular properties of kep to producethe vowel adjustment.

A core difference between these approaches is that one exploits the regularity in the exceptionswhat we call quasi-regularity - and the other does not. Quasi-regularity is thetendency for an exception to exhibit aspects of the regular pattern [3]. If there were only a few quasi-regular items, one might treat them as accidents, but in fact nearly all exceptional past-tenses in English are quasi-regular to some extent. To demonstrate this, we will review the different types (for other taxonomies, see[4,5]).
(1) Two very frequent verbs, haveand make, deletea consonant and add theregular / $\mathrm{d} /$ to what remains, forming had and made
(2) The-ep words listed above and others, including say, do, tell, sell, hear, fleeand shoe, form the past tense by adding regular /d/ or /t/ and making a vowel adjustment, producing kept, said, did, told, etc.
(3) Twenty-eight verbs, likecut and hit, have past tenses identical totheir stems; all end in /d/ or /t/, as regular past tenses do.
(4) Another set of verbs ending in /d/ or /t/, including bleed, breed, feed, lead, read, speed, hide, ride, slide and fight, adjust the vowel tocreate/d/- or /t/-final bled, slid, fought, etc.
Several sets of verbs (waning in somedialects) use unvoiced /t/instead of /d/, usually after /// or /n/:
(5) Onesuch set, including dwell, smell, spell, spill, burn and learn, would be completely regular except for thede-voicing of theinflection, producing past forms likespelt and burnt.
(6) Another group, including mean, dream, deal, feel and kneed, adjust the vowel and add/t/, yielding meant, dealt, etc.
(7) A third set, including build, bend, lend, rend, send and spend, replacestem-final /d/ with /t/ to make built, sent, etc.
(8) Yet another set - bring, catch, seek, teach and think - adjust the vowel to/aw/ and replacethefinal consonant duster with /t/, creating brought, caught, etc.
Overall, 59\% of the 181 E nglish exceptions listed by Pinker and Prince[5] have past tenses ending in /d/ or /t/, and fall into one of classes (1)-(8).
(9) Nearly all of theremaining verbs arealso quasi-regular, in that the consonants of the stem are preserved. I nstead of adding/d/ or /t/, the past tense is formed by making a vowel change, as in sing-sang, riseroseand fly-flew.
There are only two 'suppletive' verb roots in English, beand go, with derivatives forgo and undergo, wherethepast-tense form is completely different from the present tense.

As noted above, the Pinker-Ullman theory provides no mechanism for exploitingtheaspects of the regular past tense that areso prevalent among exceptions. Pinker did adopt the idea that the lexical system has connectionist-likeproperties [6]. This provided a way to account for clusters among the exceptions and for creativeformation of novel forms consistent with such clusters. This was a step in the right direction, but did not gofar enough. Because past tenses of exceptions in this account areformed by thelexical system al one, thetheory still fails to explain why many of theexceptions share properties with regular past-tense forms and offers noway to exploit theregular mapping in forming past tenses of theseexceptions.

By contrast, connectionist models inherently capturetheregularity in the exceptions because the exceptions areprocessed by the samenetwork
that processes the regulars. As al ready noted for keep-kept, items that are quasi-regular can make partial use of the same connections that are used in forming exceptions. All nine of the types noted above, encompassing 177 out of 181 forms, exploit to some degreethe connection weights that produce regular items. Only the suppletive items fail tomake any use of the connections that produce the regular past tense[7].

The past tense of English is just one domain that exhibits quasi-regularity. In English spelling-sound mapping, virtually every exception has some degree of regularity; pint, aisle hymn and champagneall
partially adheretoregular correspondences. Quasi-regularity exists in richly inflected languages likeSpanish, and in derivational as well as inflectional morphology [8,9]. It is found in I anguage units beyond the word level [10,11] and, beyond language, it characterizes real-world objects, which have properties shared with other related objects as well as someunique properties [12]. Given these observations, the plausiblecandidate mechanisms of human linguistic and conceptual processes arethose that can exploit quasi-regularity. Single-system connectionist models havethis property; theWords or Rules theory does not.

References

1 Pinker, S. and UIIman, M. (2002) The past and future of the past tense. Trends Cogn. Sci. 6, 456-463
2 Rumelhart, D.E. and McClelland, J .L. (1986) On learning the past tenses of English verbs. In Paralle Distributed Processing (Vol 2): Psychol ogical and Biological Modeds (McClellandJ .L. and Rumelhart D.E., eds), pp. 216-271, MIT Press
3 Plaut, D.C. et al. (1996) Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol. Rev. 103, 56-115
4 Bybee, J.L. and Slobin, D.L. (1982) Rules and schemas in the development and
use of the English past pense. Language 58, 265-289
5 Pinker, S. and Prince, A. (1988) On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition 28, 73-193
6 Pinker, S. (1991) Rules of language. Science 253, 530-535
7 Plunkett, K, and Marchman, V.A. (1991) U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition. Cognition 38, 43-102
8 Bybee, J.L. (1985) M orphol ogy: A Study of the Relation Between Meaning and Form. J ohn Benjamins

9 Burzio, L. (2002) Missing players: phonology and the past tense debate. Lingua 112, 157-199
10 Harris, C.L. (1994) Coarse coding and the Iexicon. In Continuity in Linguistic Semantics (Fuchs, C. and Victorri, B., eds), J ohn Benjamins
11 McClelland, J. L. (1992) Can connectionist models discover thestructure of natural language? In Minds, Brains and Computers (M orelli, R. et al., eds), pp. 168-189, Ablex Publishing
12 Rogers, T.T. and McClelland, J.L. Semantic Cognition: A Parallel Distributed Processing Approach. MIT Press (in press)

Rules or connections in past-tense inflections: what does the evidencerule out?

J ames L. McClelland and Karalyn Patterson

Abstract

Pinker and colleagues propose two mechanisms - a rule system and a lexical memory - to form past tenses and other inflections. They predict that children's acquisition of the regular inflection is sudden; that the regular inflection applies uniformly regardless of phonological, semantic or other factors; and that the rule system is separably vulnerable to disruption. A connectionist account makes the opposite predictions. Pinker has taken existing evidence as support for his theory, but the review of the evidence presented here contradicts this assessment. Instead, it supports all three connectionist predictions: gradual acquisition of the past tense inflection; graded sensitivity to phonological and semantic content; and a single, integrated mechanism for regular and iregular forms, dependent jointly on phonology and semantics.

Oneview of language, originating with Chomsky [1,2], championed by F odor and

Pylyshyn [3] and widely pursued by Pinker [4-7], holds that abstract symbolic rules play a central role in human language processing. This daim is part of a broader view that human cognitive mechanisms are symbolic, modular, innateand domain-specific [4]. An alternative view, from Rumel hart and McClelland [8] (seeBox 1), challenges theneed for the use of rules. This view arises within the Parallel Distributed Processing (PDP) or connectionist framework [9], in which cognitive processes areseen as graded, probabilistic, interactive, context-sensitive and domain-general. Acquisition of language and other abilities occurs via gradual adjustment of the connections among simple processing units. Characterizations of performanceas 'rule-governed' are viewed as approximate descriptions of patterns of language use; no actual rules operate in the processing of language.

These perspectives apply to many aspects of language, and, as Pinker and UIIman suggest [10], tomany other domains as well, but herewefocus on inflectional morphology, especially theE nglish past tense. Theidea of a past tense rule arosefrom noting that young children sometimes regularize irregular verbs, producing for example, goed or felled [11], and from the finding that children (and adults) typically produceregular forms for nonce(novel) words in a past-tense elicitation task [12]. Given a picture of a man said to bericking and a request to complete Yesterday he \qquad ',

Box 1. The Rumelhart-McClelland model

The Rumelhart-McClelland model of past-tense inflection [a] consists of a simple pattern-associator network [b,c] that learns the relationship between the phonological forms of the stems and past-tenses of English words. This network is flanked by a fixed encoding network on the input side and a fixed decoding network on the output side (see Fig. I). All learning occurs in the pattern associator. The encoding network simply converts a string of phonemes into the 'Wickelfeature' representation used inside the network to represent the stem of each word. Similarly, the decoding network converts the computed Wickelfeature representation of the attempted past-tense response back to a sequence of phonemes. The overall theory within which this model arose asserts that processing is meaning- and context-sensitive; for simplicity, such influences were not included in the model.

Processing

For a given input, the pattern associator produces an output by a simple neuron-like activation process. Each output unit computes a 'net input' based on the current input pattern and the values of the connection weights. The net input is the sum, over all of the incoming connections, of the activation of the sending unit multiplied by the weight of the connection. Each unit also has a modifiable threshold. When the net input exceeds the threshold, the unit tends to be turned on, with a probability approaching 1 as net input increases; otherwise, the unit tends to be turned off.

Leaming

The network is trained using Rosenblatt's perception convergence procedure [d]. On a learning trial, the model is presented with the stem form of a word and its correct past tense. The stem form is encoded, and the activations of the Wickelfeature output units are computed. This computed representation is compared with the correct representation of the word's past tense. If the computed activation of a given unit matches the correct value, no learning occurs. If a unit that should be active is not, the weights to that unit from each active input unit receive a small fixed increment, and the threshold is reduced. Correspondingly, if a unit that should not be active is on, the weights from each active input unit are decremented and the threshold is increased. As a result, the network gradually improves performance over many learning trials, simulating a gradual developmental process. Later models use the back-propagation learning algorithm [e], an extension that allows the use of one or more layers of hidden units between inputs and outputs, and/or recurrent connections [f].

Fig. I. The Rumelhart-McClelland model of past-tense inflection (see text for discussion). Reprinted with permission from Ref. [a].

Representation

Coding is based on a idea by Wickelgren [g], in which word forms are represented by units designating each phoneme, together with its predecessor and its successor. Thus help would be represented by_he, hel, elp, and $/ p_{-}$. The model used units called 'Wickelfeatures' (WFs), each representing a feature from each of the phonemes in such triads. For example, there is a unit representing the feature sequence liquid-unvoiced-end, which would be active in representing $/ p_{-}$. In general, words ending in a unvoiced phoneme are represented by several WFs capturing the feature that the final phoneme is unvoiced. For the past tense output helped, such WFs should be replaced with others representing the added unvoiced stop/t/ that forms the past-tense inflection.

Capturing regular and exceptional inflections

For regular verbs in English, if the stem ends in a unvoiced sound (like the/p/in help) the past tense will be formed by adding the unvoiced dental /t/.Through exposure to regular words, the network will repeatedly experience cases where the input contains WFs coding final unvoiced stem phonemes and the output contains WFs coding the added final /t/. The learning process will build up positive connections from the active input units to the appropriate output units, thereby encoding the regular addition of /t/ after unvoiced phonemes. Also, all non-final WFs of the stem are simply maintained in the past tense form, so the network will gradually acquire connections mapping each non-final WF to its counterpart in the output. At the same time, each output unit can be influenced by any input unit. To produce exceptions, connections from units coding specific input features to units coding for exceptional aspects of the inflection will be strengthened, thereby allowing specific properties of the input (such as presence of 'ee' followed by final /p/) to modify specific properties of the output, so that items like creep, keep and sleep are correctly mapped to the past tenses crept, kept and slept.

References

a Rumelhart, D.E. and McClelland, J.L. (1986) On learning past tenses of English verbs. In Paralle Distributed Processing: Vol 2: Psychological and Biological Modes (Rumelhart D.E. and McClellandJ .L ., eds), MIT Press
b K ohonen, T. (1977) AssociativeMemory: A System Theoretical Approach, Springer
c Anderson, J . (1977) Neural models with cognitive implications. In Basic Processes in Reading: Percpetion and Comprehension (LaBarge, D and Samuels, S.J ., eds), pp. 27-90, Erlbaum
d Rosenblatt, F. (1962) Principles of Neurodynamics, Spartan
e Rumelhart, D.E.etal. (1986) Learning representations by back-propagatingerrors. Nature323, 533-536
f Williams, R.J . and Zipser, D. (1989)A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270-280
g Wickelgren, W.A. (1969) Context-sensitive coding, associative memory, and serial order in (speech) behavior. Psychol. Rev. 86, 44-60

English past tense, theruletakes as its argument any item identified only as a verb stem, and produces as its output its regular past tense. In English theoutput is stem $+[d]$ (subsequent machinery realizes [d] as/d/, /t/ or /^d/, as in loved, liked or hated, depending only on thestem-final phoneme). Therule is said to be uniform in its application and

J ames L. McClelland

Center for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, 155 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
e-mail
jlm@cnbc.cmu.edu

Karalyn Patterson

Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, UK CB2 2EF. e-mail:
karalyn.patterson@ mrc-cbu.cam.ac.uk

Table 1. Predicted and observed aspects of regular inflection

Aspect	Prediction from		Observed
	Symbolic Rules	Connectionist Models	
Acquisition Sensitivity: to phonology to semantics in development in German +s plural Separability from exceptions: Genetically Neurologically no	no	no	yes

independent of the meaning, phonology, frequency of occurrence, or any other attribute of the verb stem to which it applies. A further characteristic often attributed to such rules is that their acquisition is sudden. Thus Pinker suggests that the child 'deduces'therule (Ref. [5], p. 193), calling this an 'epiphany'(p. 194) and a ' 'Eureka'moment' (p. 202). When werefer to symbolic rules, we mean rules with the characteristics just described.

Exceptions likewent, rang and slept cannot be generated by the 'add [d]'rule. Pinker's theory proposes that they aredealt with by a lexical mechanism that is sensitivetofrequency and similarity, and entirely distinct from symbolicrules. When planning to produce the past tense of a verb, the speaker first checks to see if an exceptional form

Fig. 1. Acquisition of the regular past tense by three children, Adam, Eve, and Sarah, as presented in Marcus et al. [15] and in Hoeffner (PhD thesis, Carnegie Mellon University, 1996). Percent usage of the regular past tense in obligatory contexts is plotted as a function of the child's age in months. (a) Marcus et al. presented data based on scoring by Cazden [16]. (b) Hoeffner repeated the analysis starting from the transcript provided in the CHILDES database [18], and included additional time periods. Two independent raters considered each occurrence of a regular verb in the child's speech, first considering the context of occurrence and evaluating whether a past tense was required before seeing the form of the verb actually used, thereby eliminating possible bias in determining whether the context required a past tense and producing an increase in the number of obligatory contexts identified. Data in (a) replotted based on data from Cazden [16] reprinted in Ref. [15].
can beretrieved from lexical memory. To account for the occasional occurrence of forms like brang (as the past tense of bring) or splung (as the past of thenonce verb spling), Pinker proposes that lexical memory has associative properties likePDP networks, and thus sometimes produces novel exception forms for inputs similar to known exceptions. In any case, if lexical memory offers up a form, it is produced; if not, the symbolic rule is used as a default. The theory encompassing therule and thelexicon has been called the dual-mechanism or dual-routeaccount.

Pinker and his colleagues, having examined several predictions of their account, concludethat the availableevidence provides convincing support for it. The predictions arestrong enough that confirmation would indeed support the idea of thesymbolicrule mechanism. Furthermore, dear evidencefor the purported properties of the symbolicrule mechanism would contradict basictenets of thePDP alternative. ThePDP account denies that rule-likeaspects of languageand other cognitive processes are generally characterized by the discreteness, uniformity of application, and modularity assumed for the symbol ic rule system. It proposes that both regular and exceptional aspects of verb inflection (and of other aspects of languagetoo; see[13,14]) emergefrom a single, integrated mechanism. The connectionist approach makes opposite predictions tothose of the rule-based approach (seeTable 1), so that evidence against one is support for theother. It is therefore crucial to examinetheevidence.

In what follows we consider whether inflectional morphology exhibits threekey aspects of thesymbolic rule (dual-mechanism) theory: (1) that acquisition of the symbolicrule is sudden; (2) that therule is uniform in its applicability and independent of phonol ogical, semantic or other factors; and (3) that the rule-based mechanism is separatefrom the mechanism that deals with exceptions.

Is acquisition of the regular past tense sudden?

Marcus et al. [15] considered the onset of theregular past tense, using Cazden's [16] analysis of recorded speech from three normally devel oping children (Adam, Eveand Sarah) [17]. Marcus et al. suggest that thefirst over-regularization in each child's corpus signals themoment of acquisition of the past-tenserule, and statethat this over-regularization error is followed by 'rapid increases [in inflecting regulars] tohigh levels [...] shortly afterward. Adam's first over-regularization occurred during a 3-month period in which regular marking increased from 0to 100\%' (Ref. [15] , p. 103).

H oeffner evaluated these data (J . H oeffner, PhD thesis, Carnegie Mellon University, 1996), both as presented by Marcus et al. and as they emerged in a re-analysis using thetranscription in theCHILDES database[18] (seeFig. 1). Considering first the data presented in Marcus et al., H oeffner noted that one could just as easily say that 'Adam's first

Fig. 2. Summary of effects of semantics and grammar on inflections of the nonce verbs frinkand sprink from Ramscar [22]. (a) Use of irregular (frankor sprank, yellow bars) or regular (frinked or sprinked, mauve bars) in four different conditions. Note that in a neutral condition, with no semantic context, participants preferred irregular past tenses, and this trend persisted when context provided a meaning for the nonce verb similar to that of drink. When the context suggested a meaning similar to regular winkor blink, or even to the regular word meditate, participants shifted to the regular past tense, suggesting that use of the regular past tense can be influenced by semantics. (b) Subjects' ratings were not affected by their judgment of whether the nonce verb seemed to be denominal. Redrawn with permission from Ref. [22].
over-regularization occurred during a six-month period in which the probability of using theregular... rosegradually from 24 to 44%.' Either statement seems fairly arbitrary in fact; the data arenoisy, and spikes occur when rel atively few observations were available(Adam's 100\% marking at 37 months is based on 8 observations). Given thenoise, the graphs from all three children suggest a process that proceeds from very little marking in obligatory contexts to fairly reliable marking over the course of about oneyear. H oeffner's own analysis (Fig. 1b), suggests an even moregradual acquisition process. A good fit to the data was achieved with a logistic regression in which the use of the regular past increases monotonically with age. Use of first over-regularization as a predictor did not reliably improve the account for regularization rates in any of the threechildren.

In short, theacquisition of theregular past tenseis not sudden. According to Brown, reviewing Cazden's analysis of other inflections, thesituation is the same in all cases:

There is always a considerable period... in which production-when-required is probabilistic. This is a fact that does not accord well with thenotion that the acquisition of grammar is a matter of the acquisition of rules, sincetherules... either apply or do not apply. Onewould expect rule acquisition to be sudden. (Ref. [17], p. 257)

Is application of the regular past tense uniform?

Pinker stresses that symbol ic rules do not vary in their applicability, but depend only on categorical conditions: the past tense applies to any verb stem. Does theevidence support the predicted uniformity? We consider four cases:

Uniformity with respect to phonology
Prasada and Pinker [19] tested judgments on and production of the past tense using nonceforms like plip or ploamph, manipulating phonological similarity to existing words. They concluded that therewas an effect of similarity toknown exceptions on novel irregular inflections, but noeffect of similarity toknown regulars for theregular inflection. However, therewas an effect for regulars, which Prasada and Pinker attributed to a confound: their noncestems, likeploamph, that werenot similar to other regular items, werealso phonol ogi cally strange. Even though subjects were asked tojudgetheinflection and not thestem, Prasada and Pinker claimed that thejudgments were affected by the phonol ogical properties of thestem, and 'corrected' for this by subtracting stem acceptability ratings. But this may be correcting away a real effect. A recent study by Albright and H ayes (unpublished manuscript) avoided the confound by using noncestems of high phonol ogical acceptability, and varied whether the item occurred in an 'island of reliability'for theregular or for an exceptional past tense. F or example, their corpus contained over 300 verbs ending in an unvoiced fricative (e.g. rush or laugh); this is an island of reliability in that every such verb is regular. Both regular and irregular inflections received higher ratings if they camefrom reliableislands. Theeffect for regulars survived partialling out any competing influencefavoring exceptions. Thus the regular past tense is sensitiveto phonol ogical attributes of thestem, violating the prediction of thesymbolicruleaccount.

Uniformity with respect to semantics

 A rolefor word meaning informingtheregular past tense is vigorously rejected in Pinker's theory, because sensitivity to semantic similarity runs counter to theclaimed encapsulation of the system that applies phonological transformations to word forms. Yet an influence of meaning in the selection of regular as well as irregular past-tenseforms has often been argued [20-22]. In a recent study, Ramscar [22] placed nonce verbs like frink into semantic contexts that encouraged an interpretation resembling either drink or blink. Theformer typically elicited frank whereas the latter increased thelikelihood of frinked (seeFig. 2). Contrary to Pinker's daims that denominal status blocks access to exceptions, a high level of frank responses occured even when subjects treated frink as denominal. Other experiments in Ramscar's study [22] demonstrated strong effects of contextually-specified meanings on inflection of fly as flew or flied, and again denominal status failed to block the choice of irregular flew. These findings clearly show that meaning can influence choice of theregular vs. irregular inflection, and fail to support the claim [5,23] that denominal status blocks access to lexically marked exceptions.
Semantic influences during acquisition

Shirai and Anderson [24] examined the use of thepast tenseas a function of semantic properties of the situation referred toin children's speech. When it first appears, theuse of the past tense(including over-regularization) is largely restricted to descriptions of punctateevents that haveendpoints and produce results (such as 'I dropped it'); it then gradually spreads tocases in which oneof thetypical properties (is punctate, has endpoint, produces results) is violated. Thechildren's initial usagecorresponds tothetypical, but certainly not theonly, cases that appear in their mother's speech, suggesting that initial useof the regular past grows froma semantic prototype.

The exception that proves the rule?

In English, theregular past is common, applying to 86% of the 1000 most common verbs [5]. Pinker [5,6] and Marcus et al. [25] have suggested, however, that occurrencein a high percentage of the verbs in a language is not necessary for the discovery of a regular pattern. Three cases have received thebulk of this discussion: (1) the regular German past participle +t [26]; (2) theArabic broken plural [27]; and (3) the German +s plural [25]. Careful scrutiny of cases (1) and (2) $[28,29]$ indicates that theforms in question may not bein theminority. Sothe casefor 'theexception that proves therule' [25] falls tothe German +s plural. Marcus et al. claim that the +s plural, despite occurring in only a small fraction of German nouns, is the default used by German speakers whenever thereis a 'failure of lexical memory'. They enumerate 21 separate contexts in which they supposethat lexical memory will fail, and argue that the + splural should be used in all of these cases because it functions as a symbol ic rule independent of the particular characteristics of the itemto which it applies.

The +s plural certainly is in the minority in German. But does it apply uniformly as thesymbolic ruleaccount predicts? In fact, its usage is not uniform even in the Marcuset al. paper [25], which examined assignment of the + splural to nonceforms treated as (a) unknown but real German words, (b) foreign words, or (c) proper names. For both (b) and (c) only the default rule should be available, and yet these two cases do not reveal the same pattern of extension of the $+s$ plural. Hahn and Nakisa [30] (seeFig. 3) disconfirm the claim that +s acts uniformly across several of the contexts claimed by Marcus et al. The only case of high and nearly uniform use of $+s$ occurs with surnames and does not extend fully even to first names: two members of the M ann family arecalled Manns but two girls named Ulrikecan betwo Ulriken. Bybee al so notes relatively high probability for foreign borrowings ending in full vowels [26]. Surnamehood is an arbitrary property that must be associated with a specificuse of an item in context, and assigning ts to foreign borrowings ending in full vowels requires

Fig. 3. Evidence that the German + splural is not used uniformly across several situations supposedly calling for the use of a default as proposed by Marcus et al. [25]. Each row of the figure represents a different noun form, with the type of the form indicated; the horizontal bars separate the different types. Columns of the figure indicate alternative possible plural inflections, with the + splural specifically highlighted. Grayscale darkness of the entry in each cell indicates the likelihood of using the particular plural for the given item, based on data from native German speaking adults. Reprinted with permission from Ref. [30].
sensitivity to phonology and etymology. Such specificity undercuts the notion that the German +s plural is in any sense a default. It is not the exception that proves the rule; instead it is another case with thegraded, probabilistic and context-sensitive characteristics seen in connectionist networks.

Is regular inflection separable from inflection of exceptions?

Is therea separate mechanism for regular inflections? In contrast to the connectionist approach, the dual-mechanismtheory argues that thereis, and predicts the occurrence of selective deficits in producing and comprehending regular inflections. Pinker considered two putativeexamples [4]:

Fig. 4. Performance in an elicitation task requiring production of the past tense given the present ('Every day I wash my clothes; yesterday I__ my clothes.') or of the present given the past ('Yesterday I washed my clothes; every day I__ my clothes') for affected (mauve bars) and unaffected (yellow bars) members of the KE family. Results are based on matched sets of 10 regular and irregular verbs. Redrawn with permission from Ref. [35].

Genetic knockouts?

A largefamily (the KE family) consists of some normal individuals and some with an identified single-gene defect [31,32]. Reports based on testing with a small number of stimuli $[33,34]$ suggested that affected individuals had special difficulty with regular compared with irregular inflections. Subsequent investigation by Vargha-K hadem et al. [35], however, painted a different picture. Affected family members were found to have a widerange of deficits in linguisticand non-linguistictasks, and they demonstrated substantial and equal difficulty with regular and irregular forms (Fig. 4) when tested with a longer and better-controlled list. There was no sign of selective vulnerability of the regular inflection. We do not ruleout the possibility that a developmental phonological deficit could result in difficulty acquiring regular forms [36]. I ndeed, if regular inflections are phonetically weak in the input to a network, an impairment in phonol ogical representation can result in a failuretolearn the regular past tense[37]. This provides one way of understanding why some children diagnosed with specific language impairment present with an apparent selective deficit in inflectional morphology and other aspects of grammar [38], as many aspects of grammar aresignalled by phonetically weak material [39].

Effects of brain damage?

Anterior lesions in theleft hemisphereoften result in dysfluent speech containing few grammatical morphemes or inflections [40]. Ullman et al. [41,42] have reported a patient of this type who produced the correct past tensefor 69% of exceptions but only 20% of regulars and 5% of nonceforms in a past-tense elicitation task. In collaboration with several others [43] we have considered the possibility that an uncontrolled difference between theregular and exception items in UlIman's study could have
influenced the results: theword-final consonant dusters werelonger, on average, in theregular past tenses (2.0 consonants) than in the exceptions (1.2 consonants). This is natural, because regular inflection involves the addition of phonol ogical material to the verb stem, thereby increasing its complexity [44]. By contrast, theformation of exceptions generally involves a vowel and/or consonant change (eat-ate, think-thought) that tends to conserve complexity. Where something is added, thereistypically a compensatory reduction in vowel length (keep-kept), so that exceptional past tenses fall within acceptable phonol ogical bounds.

Bird et al. [43] identified 10 non-fluent aphasic patients who wereall significantly better with irregular verbs on a screening list unmatched for phonol ogical factors. The advantage occurred in the elicitation task (37% vs. 20\% correct), and also in single-word repetition (68\% vs. 47\%) and single-word reading (44% vs. 24%). When tested with regular and exception past tenses matched for phonological complexity, the patients nolonger showed an advantage for irregulars in theelicitation task (means of 26\%irregular, 29\% regular) or in repetition (65\%irregular vs. 64\% regular), supporting the view that the initial difference was phonological rather than morphological in origin. A remaining irregular advantage in reading (41\% vs. 27\%) was interpreted as a concreteness effect: past-tense verbs like ground and rosearealso concretenouns.

Ullman et al. [41] al so reported a disadvantage in theelicitation task for regular verbs in patients with Parkinson's Disease (PD). Again, however, the effect can beinterpreted in terms of phonol ogical complexity because, in the specially designed 'PD retest'list, onset consonant dusters were longer in the regular than theirregular verbs. Furthermore, the disadvantagereported for non-words relative to exceptions cannot be attributed to inflectional processes: the PD patients'responses to non-words, although often characterized by stem distortions (pragged or planned instead of plagged), were correctly inflected 91% of the time (vs. 88\% for the exceptions).

Summary of the state of the evidence

In Table1 welisted contrasting predictions of the dual-mechanism and PDP theories. Our review of the evidencesuggests that theonset of the regular past (and all other inflections) is gradual rather than sudden; that both the English regular past tenseand the German ts plural are subject to phonological, semantic and other influences rather than being uniform in their application; and that thereis no convincing evidencethat theinflection of regular verbs can beselectively impai red, except insofar as such impairment is a direct or indirect consequence of a phonological impairment. Theevidenceseems therefore to befully compatiblewith the idea that

Acknowledgements
Preparation of this article was supported by MH 47566, MH 64445 and by the Medical Research Council. We thank David Plaut, Michael Ramscar and MarkSeidenberg for discussion and comments. We acknowledge Pinker and Ullman's generous comments about
the role of the
Rumelhart-McClelland model in stimulating psycholinguistic research. Clearly, though, just as much of the credit goes to Stephen Pinker and his collaborators, including Michael Ullman, for taking up the challenge posed by the RM model in this vigorous ongoing debate.
inflectional processes arisein a singleintegrated system, in which graded and context-sensitive influences of many different types jointly determine whether a regular or an exceptional past tense (or other inflection) will apply. This singlesystem has all of the characteristics of the connectionist framework for inflectional processing.

We do not daim that it would beimpossibleto construct a rule-based model of inflection formation that has all of the properties supported by the evidence. However, such an account would not bean instantiation of Pinker's symbol ic rule account. In fact, rule-based models with some of theright characteristics are currently being pursued ([45]; Albright and Hayes, unpublished). If such models use graded ruleactivations and probabilistic outcomes, allow rules tostrengthen gradually with experience, incorporatesemantic and phonological constraints, and userules within a mechanism that also incorporates word-specific information, they could becomeempirically indistinguishablefroma connectionist account. Such models might beviewed as characterizing an underlyingly connectionist processingsystem at a higher level of analysis, with rules providing descriptivesummaries of the regularities captured in thenetwork's connections.

Towards an adequate connectionist account

 Existing connectionist models still havelimitations. Given theextent of empirical support for the predictions arising from the connectionist approach, however, weremain convinced of thefruitfulness of pursuing the approach. Our current efforts build on a model byJ oanisseand Seidenberg[46] (Fig. 5), which incorporates a rol efor semantic representations (seealso Refs [13,14]), something left out of Rumelhart and McClelland's original formulation [8] as a simplification. This model can explain why a semantic deficit disproportionately disrupts production of exceptional past tenses, as demonstrated by Ullman et al. [41,42] and Patterson et al. [47]: word meaning provides information that helps the network totreat a particular item distinctively, counteracting thenetwork's tendency to apply the regular inflection. Somelimitations remain, however. Our extensions will use distributed semantic representations that capturesimilarity in meaning, as well as refinements to phonol ogical processes to address phonol ogical complexity and percepti bility effects. Thefact that such a complete model is not yet implemented is scarcely surprising or unique. Encompassing the wholeproblem is a real challenge

Fig. 5. The connectionist model ofJ oanisse and Seidenberg [46], in which regular and inrregular forms are generated by a single system, using phonological input and output representations and a semantic internal representation. When a verb is presented on the input, the network is trained to generate an appropriate semantic representation (activating the correct word unit and the past tense unit if appropriate) and also to generate the corresponding output representation. The network is also trained to produce the corresponding phonological output when given an input activating anindividual semantic unit corresponding to each taught word, and to generate past tenses when the past tense unit is activated and either a verb stem is presented to the phonological input or a word unit is activated in semantics. Redrawn with permission from Ref. [46].
for any model, and current rule-based proposals areat best only partially implemented.

In pointing towards a future connectionist account, we note onesignificant aspect that might be under-appreciated. Contrary to somestatements (e.g. Ref. [4]), connectionist networks arenot simply anal ogy mechanisms that basetheir tendency to generalize on raw item-to-item similarity [48]. Instead, they aresensitiveto regularities, sothat if an input-output relationship is fully regular, the network can closely approximate a categorical, symbolic rule. Such a property is necessary if these models are to capturethefull range of inflectional systems, becausethere are cases throughout theworld's languages (including the English progressive,-ing, form) that are completely regular [49]. Theseoccur among many other cases with varying degrees of regularity, and networks of the right sort should be ableto capture the whole spectrum. This makes the connectionist network fundamentally different from either the symbolic rule or the lexical mechanism considered in the dual-mechanism account.

References

1 Chomsky, N. (1957). Syntactic Structures, Mouton
2 Chomsky, N. (1959) Review of Skinner (1957). Language35, 26-58
3 Fodor, J . and Pylyshyn, Z. (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3-71
4 Pinker, S. (1991) Rules of language. Science 253, 530-535

5 Pinker, S. (1999) Words and Rules: The Ingredients of Language, HarperCollins 6 Pinker, S. (2001) Four decades of rules and associations, or whatever happened tothe past tensedebate? In Language, TheBrain, and CognitiveDeve opment: Papers in Honor of J acques Mehler. (Dupoux, E. ed.), MIT Press
7 Pinker, S. and Prince, A. (1988) On language and connectionism: analysis of a parallel distributed
processing model of language acquisition. Cognition 28, 73-193
8 Rumelhart, D.E. and McClelland, J .L. (1986) On learningthepast tenses of English verbs. In Paralle Distributed Processing (Vol 2): Psychological and Biological Models(McClellandJ .L. and Rumelhart D.E., eds), pp. 216-271, MIT Press
9 McClelland, J.L.etal. (1986) The appeal of parallel distributed processing. In Paralle

Distributed Processing (Vol.1): Explorations in theMicrostructureof Cognition (Rumelhart, D.E. and McClelland, J.L., eds), pp.3-44, MIT Press
10 Pinker, S. and UlIman, M. (2002) The past and future of the past tense. Trends Cogn. Sci. 6, 456-463
11 Ervin, S.M. (1964) Imitation and structural changein children's language. In New Directions in theStudy of Language(Lenneberg, E. ed.), MIT Press
12 Berko, J. (1958) Thechild's learning of English morphology. Word 14, 150-177
13 Seidenberg, M.S. and McClelland, J .L. (1989) A distributed, developmental model of word recognition and naming. Psychol. Rev. 96, 523-568
14 Plaut, D.C. et al. (1996) Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol. Rev. 103, 56-115
15 Marcus, G.F. etal. (1992) Overregularization in languageacquisition. Monogr. Soc. Res. Child Dev., Serial No. 228, Vol 57, No. 4
16 Cazden, C.B. (1968) The acquisition of noun and verbinflections. Child Dev. 39, 433-448
17 Brown, R. (1973) A First Language, Harvard University Press
18 MacWhinney, B. and Snow, C. (1990) Thechild language data exchangesystem: an update. J. Child Lang. 17, 457-472

19 Prasada, S. and Pinker, S. (1993) Generalization of regular and irregular morphological patterns. Lang. Cogn. Process. 8, 1-56
20 Harris, C.L. (1992) Understanding theEnglish past-tenseformation: the shared meaning hypothesis. In Proc. 14th Annu. Conf. Cogni. Sci. Soc., Erlbaum
21 Daugherty, K. et al. (1993) Why no mere mortal has ever flown out to center field but people often say they do. In Proc. 15th Annu. Conf. Cogn. Sci. Soc., pp. 383-388, Erlbaum
22 Ramscar, M. (2002) The role of meaning in inflection: why the past tense doesn't requirea rule. Cogn. Psychol. 45, 45-94

23 Kim, J.J.etal. (1991) Why nomeremortal has ever flown out to center field. Cogn. Sci. 15, 173-218
24 Shirai, Y. andAnderson, R.W. (1995) The acquisition of tense-aspect morphology: a prototypeaccount. Language $71,743-762$
25 Marcus, G. et al. (1995) German inflection: The exception that proves therule. Cogn. Psychol. 29, 189-256
26 Clahsen, H. and Rothweiler, M. (1992) Inflectional rules in children's grammars: evidencefrom the devel opment of participles in German. Yearbook Morphol. 1, 1-34
27 McCarthy, J. and Prince, A. (1990) F oot and word in prosodic morphology: theArabic broken plural. Nat. Lang. Linguist. Theory 8, 209-283
28 Bybee, J.L. (1995) Regular morphology and the lexicon. Lang. Cogn. Process. 10, 425-455
29 Boudelaa, S. and Gaskell, M.G. (2002)A re-examination of the default system for Arabic plurals. Lang. Cogn. Process. 17, 321-343
30 Hahn, U. and Nakisa, R.C. (2000) German inflection: single-routeor dual-route? Cogn. Psychol. 41, 313-360
31 Vargha-K hadem, F. et al. (1998) Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. U. S. A. 95, 12695-12700
32 Lai, C.S.L.etal. (2001)A forkhead-domain geneis mutated in a severespeech and language disorder. Nature413, 519-523
33 Gopnik, M. (1990) Dysphasia in an extended family. Nature344, 715
34 Gopnik, M. and Crago, M. (1991) Familial aggregation of a developmental language disorder. Cognition 39, 1-50
35 Vargha-K hadem, F. et al. (1995) Praxic and nonverbal cognitive deficits in a largefamily with a genetically transmitted speech and language disorder. Proc. NatI. Acad. Sci. U. S. A. 92, 930-933
36 Leonard, L. (1998) Children with Specific Language Impairment, MIT Press
37 Hoeffner, J . and McClelland, J.L. (1993) Can a perceptual processing deficit explain the impairment of inflectional morphology in developmental dysphasia? A computational
investigation. In Proc. 25th Annu. Child Lang. Res. Forum (Clark, E., ed.), pp. 38-49, Center for theStudy of Languageand Information, Stanford University
38 van der Lely, H.K. et al. (1998) Evidencefor a grammar-specific deficit in children. Curr. Biol. 8, 1253-1258
39 Leonard, L.B. et al. (1992) Grammatical morphology and speech perception in children with specific language impairment. J . Speech Hear. Res. 35, 1076-1085
40 Marin, O. et al. (1976) Dissociations of language in aphasia: implications for normal function. Ann. New York Acad. Sci. 280, 864-884
41 Ullman, M.T. et al. (1997)A neural dissociation within language: evidencethat themental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J . Cogn. Neurosci. 9, 266-276
42 Ullman, M.T. et al. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang. (in press)
43 Bird, H. et al. Deficits in phonology and past tense morphology: what is the connection?
J. Mem. Lang. (in press)

44 Burzio, L. (2002) Missing players: phonology and the past tensedebate. Lingua 112, 157-199
45 Taatgen, N. andAnderson, J. Why do children learn tosay 'broke'? A model of learning the past tense without feedback. Cognition (in press)
46 J oanisse, M.F. and Seidenberg, M.S. (1999) Impairments in verb morphology following brain injury: a connectionist model. Proc. Natl. Acad. Sci.U.S. A. 96, 7592-7597
47 Patterson, K. et al. (2001) Deficits in irregular past-tense verb morphology associated with degraded semanticknowledge. Neuropsychol ogia 39, 709-724
48 Plaut, D.C. and Gonnerman, L.M. (2000) Are nonsemantic morphological effects incompatible with a distributed connectionist approach tolexical processing? Lang. Cogn. Process. 15, 445-485
49 Dabrowska, E. (2001) Learning a morphol ogical system without a default: the Polish genitive. J. Child Lang. 28, 545-574

Combination and structure, not gradedness, is the
 issue

Reply to McClelland and Patterson

McClelland and Patterson's Opinion article[1] Iargely hinges on whether theregular past tense is acquired instantaneously and applied perfectly, which they consider to behallmarks of symbolic models.

McClelland and Patterson takegradedness in behavioral data as evidencefor the connectionist approach. We beli eve this framing sidesteps thekey issue in the past-tense debate: whether human language uses mechanisms that are combinatorial and sensitivetogrammatical structureand categories.

Symbolic models of cognition [2] and our approach tolanguage in particular (see[3] Chap. 5; and [4] pp. 130-136) have al ways invoked combinatorial operations ('rules') that are acquired gradually and can beapplied probabilistically. Less-than-100\% application of a regular inflection can occur for many reasons: intermediatestages in acquisition, partial blocking by weak irregulars, phonotactic natural ness, depth of processing of the grammatical structure, uncertainty as to whether a rule's conditions have been met, and the noisiness of neural computation. An absence of step-functions or all-or-nonedata is thus questionableevidencefor connectionism.

Moregermaneis whether regular inflection is al ways availableto generatean acceptable form when memory fails, whether it applies in heterogeneous circumstances whose only common denominator is theword's grammatical category, and whether it neuropsychol ogically dissociates from memory lookup and associates with combinatorial processing.

Acquisition

McClelland and Patterson arguethat acquisition of regular tense-marking is not a step-function, but we never daimed it wasa. Theanalysis they dispute only supported the uncontroversial idea that the English past-tenseis not innateand that application of the suffix to regular and (sometimes) irregular verbs should develop in tandem [5]. This idea, together with the possibility that children can store unanalyzed words, is sufficient toexplain 'U-shaped'development of irregulars; the connectionist prediction that over-regularization is triggered by a sudden increase in regular forms in theinput is both empirically incorrect and theoretically unnecessary [5-7].

Systematic regularization

Ramscar's daimthat this phenomenon (rangthe bel/ ringed thecity) can bereduced to semantic dissimilarity is incompatiblewith thedistribution of regular/irregular homophones in English: virtually no polysemous irregular roots tieregular forms to specific meanings (*throwed up) unless they are exocentric, and virtually all exocentric irregular-sounding forms areregularized [8-10]. (Thus even J oanisseand Seidenberg conceded that semanticsimilarity is 'not important for the past tense.') Ramscar 's experiment used a single, unrepresentativeitem, confounded lexical with semantic differences, and was tainted by demand characteristics: people were in effect given the question 'Does the experimenter want metotreat frink as a distorted version of drink, or of blink?' Ramscar's intended manipulation of exocentric structurewas ineffective because it used odd semantic relationships found in noEnglish verb, and the cursory presentation gave participants no inducement totakeit seriously.

German inflection

We never conceded that German -t participles are irrelevant tothe connectionist hypothesis about the hallmarks of regularity, namely that they arean epi iphenomenon of regular forms constituting the 'overwhelming majority' of thechild's input [11,12]. Our daim was that even if onebent over backwards and recounted words using criteria maximally unfavorableto our position, theGerman -s plural would disprovethe hypothesis. But we don't accept the criteria. Counts that put -t in themajority require

[^0]collapsing morphol ogically related non-compositional words (although connectionism eschews morphological structure), countingtypes (although connectionist models aredriven by tokens, for which regulars are not in themajority by any criteria, even in English), and using huge corpora containing many obscure words.

Weagreethat the uneven applicability of -stothe different default circumstances in German requires additional explanation (see[12]). But the data are morepoorly explained by McClelland and Patterson's alternative that German speakers learn to connect -s with each 'arbitrary property that must beassociated with a specific use of an item in context', such as surnamehood ${ }^{\text {b }}$. This leaves it a coincidence that the circumstances eliciting-s(names, unassimilated borrowings, unusual-sounding words, acronyms, truncations, quotations, onomatopoeia, nominalized phrases and conjunctions) all involvefailure to access an irregular root but have nothing in common semantically or phonol ogically [11-13]. It al so does not explain why speakers use-s in circumstances too rare for them to have been trained on beforehand (e.g. quotations, as in theGerman equivalent of 'I found threeman's on page1').

Genetic impairments

Although we oncecited a preliminary finding that in SpecificL anguage Impairment (SLI), regulars are harder than irregulars (calling for the same explanation as for agrammatism) [14], our own and other subsequent analyses show no difference [15-20]. Thebest explanation is that languageimpaired people are indeed impaired with rules (as seen in their poor performance when inflecting nonsensewords) but can memorizecommon regular forms (hence the lack of a deficit compared with irregulars)[15-17]. Supporting evidence is that regulars show consistent frequency effects in SLI but not in control subjects [15-19]. This suggests that children growing up with a grammatical deficit are better at compensating for it via memorization than are adults who acquired their deficit later in life.

McClelland and Patterson claimthat pattern associators can explain a regular-irregular differenceas a by-product of a deficit in processing unstressed material. However, such a difference does not exist, and the hypothesis that SLI is caused by a perceptual deficit is nolonger tenable. Children can haveSLI without auditory processing deficits and vice-versa, and peoplewith SLI havetroubleon grammatical tasks but not on phonologically matched control tasks [21-23].

Aphasia

Bird et al. [24] replicateeight earlier studies showing that non-fluent aphasics have moretroublewith

[^1]regular than irregular forms in generation, reading, and repetition [25-33]. Most took measures to equate phonological complexity. Bird et al. implemented additional controls involving subsets of items or multiple regressions, and obtained mixed results. Theregular-irregular differencedisappeared in the new analyses of thegeneration task, survived in the reanalyses for thereading task, and disappeared in one analysis of a repetition task but survived in another. Further complicating this mixed picture is that Bird et al.'s irregular items had a greater complexity of stem-to-past mappings than in earlier studies, and their regular list included items that rhymed with irregulars (which arelikely to be memorized [25,34], leaving them less vulnerableto the effects of agrammatism).

Bird et al.'s study comparing discrimination of regular stems and pasts (press/ pressed) to discrimination of phonol ogically matched words (chess/ chest) is also equivocal. Most patients were either at chanceor ceiling at both tasks, and the others showed greater difficulty with the past-tense discrimination, which is consistent with other studies. While we applaud the extensivetesting and
careful design of theBird et al. study, we believethey havenot demonstrated that theregular-irregular difference in aphasia is an epi phenomenona of phonological complexity.

Connectionist models

We agreethat connectionist networks arenot al ways analogy mechanisms. Our point (based on explications by McClelland and other connectionists) is that pattern associators (themost common connectionist model of the past tense) tend towards analogy when learning competing patterns under standard training regimes. This is what gives such models their predictive power with irregular forms. Thedaim that some connectionist model can, given a specific architecture, training scheduleand input features, approximateany linguistic phenomenon might be true, but it is in danger of reducing connectionism toa universal statistical approximation techniquerather than a source of empirical predictions. Language cannot betreated as just a collection of 'regularities in the input'that can beapproximated by some mechanism; thoseregularities are themselves the products of human minds and need to be explained.

References

1 McClelland, J .L. and Patterson, K. (2002) Rules or connections in past-tenseinflections: what does theevidenceruleout? Trends Cogn. Sci. 6, 465-472
2 Anderson, J.R. (1993) Rules of theMind, Erlbaum
3 Pinker, S. (1984) LanguageLearnability and LanguageDevel opment, Harvard University Press
4 Pinker, S. and Prince, A. (1988) On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition 28, 73-193
5 Marcus, G.F.et al. (1992) Overregularization in language acquisition. Monogr. Soc. Res. Child Dev. 57 (Serial No. 228), 1-165
6 Marcus, G.F. (1995) Children's overregularization of English plurals: a quantitative analysis.J. Child Lang. 22, 447-459
7 Marcus, G.F. (1995) The acquisition of theEnglish past tensein children and multilayered connectionist networks. Cognition 56, 271-279
8 Pinker, S. (1999) Words and Rules: The Ingredients of Language, BasicBooks
9 Kim, J.J.etal. (1991) Why nomeremortal has ever flown out to center field. Cogn. Sci. 15, 173-218
10 Kim, J.j. et al. (1994) Sensitivity of children's inflection to morphological structure. J. Child Lang. 21, 173-209

11 Marcus, G.F.et al. (1995) German inflection: the exception that proves therule. Cogn. Psychol. 29, 189-256
12 Clahsen, H. (1999) Lexical entries and rules of language: a multidisciplinary study of German inflection. Behav. Brain Sci. 22, 991-1060
13 Clahsen, H. (1997) Therepresentation of participles in theGerman mental lexicon: evidencefor thedual-mechanism model. In Yearbook of M orphology (Booij, G. and van Marle, J ., eds), pp. 73-95, Kluwer Academic Publishers

14 Pinker, S. (1991) Rules of language. Science 253, 530-535
15 Ullman, M.T. and Gopnik, M. (1994) The production of inflectional morphology in hereditary specificlanguage impairment. In The McGill Working Papersin Linguistics: Linguistic Aspects of F amilial LanguageI mpairment (Vol. 10) (Matthews, J ., ed.), pp. 81-118, McGill University
16 UlIman, M.T. and Gopnik, M. (1999) Inflectional morphology in a family with inherited specific languageimpairment. Appl. Psychol inguist. 20, 51-117
17 van der Lely, H.K.J . and UIIman, M.T. (2001) Past tense morphology in specifically language impaired and normally developing children. Lang. Cogn. Processes 16, 177-217
18 Oetting, J.B. and Rice, M. (1993) Plural acquisition in children with specificlanguage impairment. J. Speech Hear. Res. 36, 1236-1248
19 Oetting, J.B. and Horohov, J .E. (1997) Past tense marking by children with and without specific language impairment. J. Speech Hear. Res. 40, 62-74
20 Vargha-K hadem, F. et al. (1995) Praxic and nonverbal cognitive deficits in a largefamily with genetically transmitted speech and language disorder. Proc. NatI. Acad. Sci. U. S. A. 92, 930-933
21 van der Lely, H.K.J.et al. (1998) Evidencefor a grammar-specific deficit in children. Curr. Biol. 8, 1253-1258
22 Briscoe, J. et al. (2001) Phonological processing, language and literacy: a comparison of children with mild to moderate sensorineural hearing loss and those with specific language impairment. J . Child Psychol. Psychiatry 42, 329-340
23 Bishop, D.V.M. et al. (1999) Auditory temporal processing impairment: neither necessary nor sufficient for causing language impairment in children. J. Speech Lang. Hear. Res. 42, 1295-1310

24 Bird, H. et al. Deficits in phonology and past tense morphol ogy: what is the connection? (in press)
25 Ullman, M.T. et al. (in press) Neural correlates of lexicon and grammar: evidencefrom the production, reading, and judgment of inflection in aphasia. Brain Lang.
26 Ullman, M. et al. (1997)A neural dissociation within language: evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J . Cogn. Neurosci. 9, 289-299
27 Coslett, H.B. (1986) Dissociation between reading of derivational and inflectional suffixes in two phonological dyslexics. Presented at Academy of Aphasia, Nashville, Tennessee (October 1986)
28 Coslett, H.B. (1988)A selectivemorphologic impairment in writing: evidencefroma phonological dysgraphic. Presented at Academy of Aphasia, M ontreal, Canada (October 1988)
29 Marin, O. etal. (1976) Dissociations of languagein aphasia: Implications for normal function. In Origin and Evolution of Languageand Speech (Vol. 280) (Harnad, S.R. et al., eds), New York Academy of Sciences
30 Badecker, W. et al. (1991) Varieties of sentence comprehension deficits: a casestudy. Cortex 27, 311-321
31 Badecker, W. and Caramazza, A. (1987) The analysis and morphological errors in a case of acquired dyslexia. Brain Lang. 32, 278-305
32 Penke, M. and Krause, M. (1999) Broca's aphasia and German plural formulation. Brain Lang. 69, 305-318
33 Hagiwara, H. et al. (1999) Neurolinguistic evidencefor rule-based nominal suffixation. Language 75, 739-763
34 Ullman, M.T. (2001) The declarative/procedural model of lexicon and grammar.J. Psycholinguist. Res. 30, 37-69
35 Wiese, R. (1986) Shwa and thestructure of words in German? Linguistics 24, 695-724

[^0]: aTerms like 'epiphany'and 'deduces' were used informally in Ref. [5] as a shorthand for the process by which children acquire the past tense. Thecontext (pp. 202-203) explicitly discusses thegradual development and probabilistic application of therule.

[^1]: ${ }^{\mathrm{b}}$ The pluralized nameUIrike/ Ulriken is not a counterexample, both because the-en plural strikes many speakers as archaic or jocular, and becausethefeminine suffix -eitself selects -en (seeRef. [11], Note 18; [12,35]).

